November 2011
Sun Mon Tue Wed Thu Fri Sat
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30      

Authors' Committee


Matt Blackwell (Gov)


Martin Andersen (HealthPol)
Kevin Bartz (Stats)
Deirdre Bloome (Social Policy)
John Graves (HealthPol)
Rich Nielsen (Gov)
Maya Sen (Gov)
Gary King (Gov)

Weekly Research Workshop Sponsors

Alberto Abadie, Lee Fleming, Adam Glynn, Guido Imbens, Gary King, Arthur Spirling, Jamie Robins, Don Rubin, Chris Winship

Weekly Workshop Schedule

Recent Comments

Recent Entries



SMR Blog
Brad DeLong
Cognitive Daily
Complexity & Social Networks
Developing Intelligence
The Education Wonks
Empirical Legal Studies
Free Exchange
Health Care Economist
Junk Charts
Language Log
Law & Econ Prof Blog
Machine Learning (Theory)
Marginal Revolution
Mixing Memory
Mystery Pollster
New Economist
Political Arithmetik
Political Science Methods
Pure Pedantry
Science & Law Blog
Simon Jackman
Social Science++
Statistical modeling, causal inference, and social science



Powered by
Movable Type 4.24-en

« November 2, 2011 | Main | November 9, 2011 »

6 November 2011

App Stats: VanderWeele on "Sensitivity Analysis for Contagion Effects in Social Networks"

We hope you can join us this Wednesday, November 9, 2011 for the Applied Statistics Workshop. Tyler VanderWeele, Associate Professor of Epidemiology at the Harvard School of Public Health, will give a presentation entitled "Sensitivity Analysis for Contagion Effects in Social Networks". A light lunch will be served at 12 pm and the talk will begin at 12.15.

"Sensitivity Analysis for Contagion Effects in Social Networks"
Tyler VanderWeele
Harvard School of Public Health
CGIS K354 (1737 Cambridge St.)
Wednesday, November 9th, 2011 12.00 pm

The paper is available here.


Analyses of social network data have suggested that obesity, smoking, happiness, and loneliness all travel through social networks. Individuals exert ''contagion effects'' on one another through social ties and association. These analyses have come under critique because of the possibility that homophily from unmeasured factors may explain these statistical associations and because similar findings can be obtained when the same methodology is applied to height, acne, and headaches, for which the conclusion of contagion effects seems somewhat less plausible. The author uses sensitivity analysis techniques to assess the extent to which supposed contagion effects for obesity, smoking, happiness, and loneliness might be explained away by homophily or confounding and the extent to which the critique using analysis of data on height, acne, and headaches is relevant. Sensitivity analyses suggest that contagion effects for obesity and smoking cessation are reasonably robust to possible latent homophily or environmental confounding; those for happiness and loneliness are somewhat less so. Supposed effects for height, acne, and headaches are all easily explained away by latent homophily and confounding. The methodology that has been used in past studies for contagion effects in social networks, when used in conjunction with sensitivity analysis, may prove useful in establishing social influence for various behaviors and states. The sensitivity analysis approach can be used to address the critique of latent homophily as a possible explanation of associations interpreted as contagion effects.

Posted by Konstantin Kashin at 2:59 AM