April 2013
Sun Mon Tue Wed Thu Fri Sat
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30        

Authors' Committee

Chair:

Matt Blackwell (Gov)

Members:

Martin Andersen (HealthPol)
Kevin Bartz (Stats)
Deirdre Bloome (Social Policy)
John Graves (HealthPol)
Rich Nielsen (Gov)
Maya Sen (Gov)
Gary King (Gov)

Weekly Research Workshop Sponsors

Alberto Abadie, Lee Fleming, Adam Glynn, Guido Imbens, Gary King, Arthur Spirling, Jamie Robins, Don Rubin, Chris Winship

Weekly Workshop Schedule

Recent Comments

Recent Entries

Categories

Blogroll

SMR Blog
Brad DeLong
Cognitive Daily
Complexity & Social Networks
Developing Intelligence
EconLog
The Education Wonks
Empirical Legal Studies
Free Exchange
Freakonomics
Health Care Economist
Junk Charts
Language Log
Law & Econ Prof Blog
Machine Learning (Theory)
Marginal Revolution
Mixing Memory
Mystery Pollster
New Economist
Political Arithmetik
Political Science Methods
Pure Pedantry
Science & Law Blog
Simon Jackman
Social Science++
Statistical modeling, causal inference, and social science

Archives

Notification

Powered by
Movable Type 4.24-en


« App Stats: Killewald on "His Gain, Her Pain? The Motherhood Penalty and the Fatherhood Premium within Coresidential Couples" | Main | App Stats: Pakes on "Moment Inequalities for Semiparametric Multinomial Choice with Fixed Effects" »

8 April 2013

App Stats: Lam on "Estimating Individual Causal Effects"

We hope you can join us this Wednesday, April 10, 2013 for the Applied Statistics Workshop. Patrick Lam, a Ph.D. candidate from the Department of Government at Harvard University, will give a presentation entitled "Estimating Individual Causal Effects". A light lunch will be served at 12 pm and the talk will begin at 12.15.

"Estimating Individual Causal Effects"
Patrick Lam
Government Department, Harvard University
CGIS K354 (1737 Cambridge St.)
Wednesday, April 10th, 2013 12.00 pm

Abstract:

The literature on causal inference has focused primarily on estimating average treatment effects, which aggregate over many individual effects. However, this aggregation often misses treatment effect heterogeneity, which may be of extreme importance. In addition, researchers often estimate average effects but their real quantity of interest is individual effects. In this paper, I develop methods to estimate individual causal effects based on commonly used matching procedures. I show that predictive mean matching performs the best in imputing missing potential outcomes to estimate the individual effects. I then demonstrate the flexibility of estimating individual causal effects and how they can be used to explore questions of interest, recover any other causal quantity, and be adapted to more complicated data structures. I conclude with empirical examples from political science.

Posted by Konstantin Kashin at April 8, 2013 12:41 AM